

Mark Ledebuhr, Application Insight LLC, Presenter

Using AccuPatt to Analyse Swathgobbler Datasets

How will you know where spray lands?

Qualitative Sampling

Showing the quality of the coverage, not the quantity. Generally expressed two ways:

hits per area

Percent coverage

Qualitative sampling, Water sensitive paper (WSP)

Pros	Cons
High precision	Slow to collect and scan
Can be used with any spray.	Highly sensitive to humidity, easily ruined
Lots of software options designed to evaluate it.	Expensive consumable, up to \$1 per sample
	May not capture very fine droplets (<30 micron)
	Requires some pre- planning to get

Qualitative Measurement, Bond paper calculator rolls.

Why use bond paper rolls?

PROS	CONS
Lowest cost consumable	Bond paper less precise collector, allows more bleed than Kromekote or WSP
Correlated data set (impossible to mix up cards)	Requires a visible dye
Fast to deploy and collect	Requires a fairly large, bulky swath board to hold the collector.
Highest data resolution of any method (most images and data contributing to swath)	Holding the paper securely can be difficult for large drones/aircraft
Easily visually interpreted result, actionable data without software analysis	
Durable- not damaged by humidity or sunlight.	

Low barrier to entry for intermittent users:

• Swathboards are easy to fabricate

• PVC cove molding works and is very portable (recent luggage to France)

Swathgobbler Speed TrackTM

High-speed, high-quality data collection

Speedtrack makes it easy and fast to gather formerly impossible-to-collect data

Other ways continuous swath makes easier data collection

Digital analysis with Swath GobblerTM

Complete data capture for each swath, percent coverage and hits/area reported.

1200 DPI resolution, infinite swath width.

Scalable: multiple Swath Gobblers run in parallel for fast processing

Permanent, traceable proof of quality.

Useful for GLP and other research quality verification

Swath Gobbler Report: SG-4-2023-10-05T1127

Swath Gobbler Report: SG-4-2023-10-05T1127

×

Scanning Parameter	Value
Date YMD	2023-10-05 11:27
Report Date	2024-02-22 22:04
Trial Number	4
Swath Number	4
Aircraft Type	P100Pro
Nozzle Type	Rotary
Nozzle Size	TBD
Image Spacing	100.0 mm (3.94 in)
Lighting	Red:0 Green:0 Blue:0 White:10
HSV Intervals	Hue: [30, 89], Saturation: [0, 115], Value: [0, 162]

Data outputs

Scan	Notes
None	

Analysis Notes Single Pass from RPAAS 2023, P100

Expected Center 7 m

Min %	Left	Right	Swath	Center	Shift	cv	T. Left	T. Right	T. Swath
0.5%	-22.64 ft	27.56 ft	50.20 ft	25.43 ft	2.46 ft	91.12%	-21.98 ft	25.59 ft	47.57 ft
1.0%	-21.00 ft	23.95 ft	44.95 ft	24.44 ft	1.48 ft	82.29%	-20.67 ft	23.95 ft	44.62 ft
1.5%	-20.34 ft	22.97 ft	43.31 ft	24.28 ft	1.31 ft	80.01%	-18.37 ft	23.29 ft	41.67 ft
2.0%	-17.72 ft	22.64 ft	40.35 ft	25.43 ft	2.46 ft	76.13%	-17.72 ft	22.31 ft	40.03 ft
2.5%	-17.72 ft	22.64 ft	40.35 ft	25.43 ft	2.46 ft	76.13%	-17.06 ft	15.42 ft	32.48 ft
3.0%	-17.72 ft	15.09 ft	32.81 ft	21.65 ft	-1.31 ft	65.16%	-16.40 ft	12.47 ft	28.87 ft
4.0%	-16.08 ft	10.50 ft	26.57 ft	20.18 ft	-2.79 ft	57.59%	-9.19 ft	10.50 ft	19.69 ft
5.0%	-13.12 ft	9.84 ft	22.97 ft	21.33 ft	-1.64 ft	51.20%	-8.86 ft	9.19 ft	18.04 ft
6.0%	-8.53 ft	8.86 ft	17.39 ft	23.13 ft	0.16 ft	33.59%	-8.53 ft	8.20 ft	16.73 ft
7.0%	-8.20 ft	5.91 ft	14.11 ft	21.82 ft	-1.15 ft	26.61%	-8.20 ft	5.58 ft	13.78 ft
8.0%	-8.20 ft	5.25 ft	13.45 ft	21.49 ft	-1.48 ft	25.88%	-7.55 ft	4.92 ft	12.47 ft
9.0%	-8.20 ft	4.92 ft	13.12 ft	21.33 ft	-1.64 ft	25.84%	-6.89 ft	4.59 ft	11.48 ft
10.0%	-6.23 ft	3.94 ft	10.17 ft	21.82 ft	-1.15 ft	23.70%	-5.91 ft	4.27 ft	10.17 ft
15.0%	0.00 ft	2.95 ft	2.95 ft	24.44 ft	1.48 ft	6.99%	0.33 ft	2.30 ft	1.97 ft
20.0%									
25.0%									
30.0%									

Limitations of calculating droplet size from spray cards. You can calculate it, **but should you**?

Assumption	True/False
Spreadfactor can be predicted	False. Spray rheology, droplet size, weather conditions, type of collector used, and velocity of droplet all affect spread factor. There are no easy ways to measure spread factor in field
Evaporation does not occur (drop size shift)	False. Evaporation DOES occur and can be substantial, especially at height. The spectra measured is not the spectra sprayed.
All spray emitted is captured on the card equally.	False. As droplet size decreases, transfer efficiency decreases rapidly. Small, driftable droplets do not transfer well to smooth flat cards.

AccuPatt

Quantitative string analysis designed for manned aerial work using strings and WRK system

Qualitative swath analysis using WSP/other cards

Aircraft Spray Pattern Testing Software User Manual - Version 2.0.x

Developed By: Matt Gill - National Agricultural Aviation Association

Based on Previous Work By: Dr. Richard Whitney - WRK of Oklahoma Phil Jank - USDA Aerial Application Technology Research Unit

Alded Significantly by the Technical Expertise Of: Dr. Scott Bretthauer - National Agricultural Aviation Association Dr. Brad Fritz - USDA Aerial Application Technology Research Unit Dr. Dennis Gardisser - WRK of Arkansas AccuPat WRK String Analysis Report

Provided by NAAA as Freeware:

https://github.com/gill14/AccuPatt

2022 Example Fly-In | Fisher, IL | 13 Jul 2022 | Analyst: Scott Bretthauer, Matt Gill

Measured 1.ª M M Category 170 µm 116 µm Dv0.1 Dv0.5 351 um 285 µm Dv0.9 568 µm 481 µm RS 0.89 1.59 Cov. 5.31% Area 20.74 in^a Stains 6036 D/in2 291 ⁴ Based on inputs, minimum detectable droplet

USDA Model ³

diameter is 28 µm. ² Measured Droplet Spectrum Category is calculated with reference nozzle data, and should not be considered absolute. ² USDA Model flow-weighted and interpolated

composite calculation based on stated nozzle configuration and quantities.

AccuPat Swathing with cards

				•													
	14				1.45	1.1	an ta an ta							1.1			
Ŀ	-32	L	-24	L	-16	L	-8	Ce	enter	F	र-8	R	-16	R	-24	R	-32
L	-32 F	L	-24 M	L	-16 M	L	8 C	Ce	enter M	FDSC	7 -8 С	R	-16 C	R	-24 C	R. DSC	-32 F
L DSC Dv0.1	-32 F 88 µm	L DSC Dv0.1	-24 Μ 189 μm	L- DSC Dv0.1	-16 Μ 157 μm	L DSC Dv0.1	8 C 169 μm	Ce DSC Dv0.1	enter M 155 μm	F DSC Dv0.1	R-8 C 174 μm	R DSC Dv0.1	-16 C 187 μm	R DSC Dv0.1	-24 C 195 μm	R- DSC Dv0.1	-32 F 130 μm
L DSC Dv0.1 VMD	-32 F 88 μm 147 μm	L. DSC Dv0.1 VMD	-24 Μ 189 μm 317 μm	L- DSC Dv0.1 VMD	-16 Μ 157 μm 325 μm	L DSC Dv0.1 VMD	8 C 169 μm 372 μm	Ce DSC Dv0.1 VMD	enter M 155 μm 339 μm	F DSC Dv0.1 VMD	R-8 C 174 μm 406 μm	R DSC Dv0.1 VMD	-16 C 187 μm 385 μm	R DSC Dv0.1 VMD	c-24 C 195 μm 404 μm	R- DSC Dv0.1 VMD	-32 F 130 μm 208 μm
L DSC Dv0.1 VMD Dv0.9	-32 F 88 μm 147 μm 228 μm	L DSC Dv0.1 VMD Dv0.9	-24 Μ 189 μm 317 μm 368 μm	L- DSC Dv0.1 VMD Dv0.9	-16 Μ 157 μm 325 μm 560 μm	L DSC Dv0.1 VMD Dv0.9	8 C 169 μm 372 μm 480 μm	Ce DSC Dv0.1 VMD Dv0.9	enter M 155 μm 339 μm 452 μm	F DSC Dv0.1 VMD Dv0.9	R-8 C 174 μm 406 μm 494 μm	R DSC Dv0.1 VMD Dv0.9	-16 C 187 μm 385 μm 548 μm	R DSC Dv0.1 VMD Dv0.9	C C 195 μm 404 μm 449 μm	R DSC Dv0.1 VMD Dv0.9	-32 F 130 μm 206 μm 266 μm
L DSC Dv0.1 VMD Dv0.9 RS	-32 F 88 μm 147 μm 228 μm 0.95	L. DSC Dv0.1 VMD Dv0.9 RS	-24 Μ 189 μm 317 μm 368 μm 0.56	L. DSC Dv0.1 VMD Dv0.9 RS	-16 Μ 157 μm 325 μm 560 μm 1.24	L DSC Dv0.1 VMD Dv0.9 RS	8 C 169 μm 372 μm 480 μm 0.84	Ce DSC Dv0.1 VMD Dv0.9 RS	enter M 155 μm 339 μm 452 μm 0.88	F DSC Dv0.1 VMD Dv0.9 RS	R-8 C 174 μm 406 μm 494 μm 0.79	R DSC DV0.1 VMD DV0.9 RS	-16 C 187 μm 385 μm 548 μm 0.94	R DSC Dv0.1 VMD Dv0.9 RS	-24 C 195 μm 404 μm 449 μm 0.63	R DSC Dv0.1 VMD Dv0.9 RS	-32 F 130 μm 206 μm 266 μm 0.66
L. DSC Dv0.1 VMD Dv0.9 RS Cov.	-32 F 88 μm 147 μm 228 μm 0.95 0.44%	L DSC Dv0.1 VMD Dv0.9 RS Cov.	-24 Μ 189 μm 317 μm 388 μm 0.56 5.85%	L. DSC Dv0.1 VMD Dv0.9 RS Cov.	-16 M 157 μm 325 μm 580 μm 1.24 5.54%	L DSC Dv0.1 VMD Dv0.9 RS Cov.	8 C 169 μm 372 μm 480 μm 0.84 6.01%	Ce DSC Dv0.1 VMD Dv0.9 RS Cov.	enter M 155 μm 339 μm 452 μm 0.88 3.89%	F DSC Dv0.1 VMD Dv0.9 RS Cov.	R-8 C 174 μm 406 μm 494 μm 0.79 11.25%	R DSC Dv0.1 VMD Dv0.9 RS Cov.	-16 C 187 μm 385 μm 548 μm 0.94 9.48%	R DSC Dv0.1 VMD Dv0.9 RS Cov.	-24 C 195 μm 404 μm 449 μm 0.63 5.06%	R DSC Dv0.1 VMD Dv0.9 RS Cov.	-32 F 130 μm 206 μm 0.66 1.23%
L DSC Dv0.1 VMD Dv0.9 RS Cov. Area	-32 F 88 μm 147 μm 228 μm 0.95 0.44% 2.24 in ²	L DSC Dv0.1 VMD Dv0.9 RS Cov. Area	-24 Μ 189 μm 317 μm 368 μm 0.56 5.85% 2.31 in [*]	L- DSC Dv0.1 VMD Dv0.9 RS Cov. Area	-16 M 157 μm 325 μm 560 μm 1.24 5.54% 2.33 in ²	L DSC Dv0.1 VMD Dv0.9 RS Cov. Area	8 C 189 µm 372 µm 480 µm 0.84 6.01% 2.45 in [*]	Ce DSC Dv0.1 VMD Dv0.9 RS Cov. Area	enter M 155 µm 339 µm 452 µm 0.88 3.89% 2.51 in [*]	F DSC Dv0.1 VMD Dv0.9 RS Cov. Area	R-8 C 174 µm 406 µm 494 µm 0.79 11.25% 2.30 in [*]	R DSC Dv0.1 VMD Dv0.9 RS Cov. Area	-16 C 187 µm 385 µm 548 µm 0.94 9.48% 1.83 in [*]	R DSC DV0.1 VMD Dv0.9 RS Cov. Area	-24 C 195 µm 404 µm 0.63 5.08% 2.41 in ²	R DSC Dv0.1 VMD Dv0.9 RS Cov. Area	-32 F 130 μm 206 μm 0.66 1.23% 2.36 in ²
L DSC Dv0.1 VMD Dv0.9 RS Cov. Area St.	-32 F 88 μm 147 μm 228 μm 0.95 0.44% 2.24 in ² 223	LI DSC Dv0.1 VMD Dv0.9 RS Cov. Area St.	-24 M 189 µm 317 µm 368 µm 0.56 5.85% 2.31 in ² 610	L. DSC Dv0.1 VMD Dv0.9 RS Cov. Area St	-16 M 157 µm 325 µm 560 µm 1.24 5.54% 2.33 in ² 758	L DSC Dv0.1 VMD Dv0.9 RS Cov. Area St	8 C 189 µm 372 µm 480 µm 0.84 6.01% 2.45 in [*] 889	Ce DSC Dv0.1 VMD Dv0.9 RS Cov. Area St.	enter M 155 µm 339 µm 452 µm 0.88 3.89% 2.51 in ^a 752	F DSC Dv0.1 VMD Dv0.9 RS Cov. Area St	R-8 C 174 μm 406 μm 404 μm 0.79 11 25% 2.30 in ² 1269	R DSC Dv0.1 VMD Dv0.9 RS Cov. Area St	-16 C 187 µm 385 µm 548 µm 0.94 9.48% 1.83 in [*] 726	R DSC Dv0.1 VMD Dv0.9 RS Cov. Area St	-24 C 195 µm 404 µm 0.83 5.08% 2.41 in ² 521	R DSC DV0.1 VMD Dv0.9 RS Cov. Area St.	-32 F 130 μm 206 μm 0.66 1.23% 2.36 in ² 288

N802EX 01 - Individual Card Data for Pass 1 - Page 1/1

Very low volume

		Measured 1,2	USDA Model ³
	Category	F	-
	Dv0.1	132 µm	-
_	Dv0.5	224 µm	-
SS	Dv0.9	391 µm	-
Ра	RS	1.16	-
ė	Cov.	0.53%	
osit	Area	308.57 in ²	
đ	Stains	14405	
ပိ	D / in2	47	

¹ Based on inputs, minimum detectable droplet diameter is 28 µm.
² Measured Droplet Spectrum Category is calculated with reference nozzle data, and should not be considered absolute.
³ USDA Model flow-weighted and interpolated composite calculation based on stated nozzle configuration and quantities.

2 GPA application with rotary atomizer drone

Downwind fractionation obvious (right to left)

Swathgobbler read the paper Every 200 mm (5x/meter). 6-7 min.

80 samples over 16 meters

Faster to capture data and analyse, 20-30 min total time.

		Measured 1.2	USDA Model ^a
_	Category	М	-
	Dv0.1	179 µm	-
	Dv0.5	303 µm	-
ss	Dv0.9	453 μm	-
Ра	RS	0.90	-
ė	Cov.	1.50%	
osit	Area	310.53 in ²	
đ	Stains	23137	
ပိ	D / in2	75	

State of the second se

¹ Based on inputs, minimum detectable droplet diameter is 28 μm.

² Measured Droplet Spectrum Category is calculated with reference nozzle data, and should not be considered absolute.

³ USDA Model flow-weighted and interpolated composite calculation based on stated nozzle configuration and quantities.

Conclusions:

- AccuPatt provides comparable outcomes to SwathGobbler Pro software in percent cover and hits. More work needed in some drop sizing scenarios.
- AccuPatt offers additional robustness of the final report with ability to repeat and average passes.
- AccuPatt offers additional, highly valuable insight into the spray deposition across and outside the swath.
- AccuPatt card analysis with very large batches is slow to run. The software requires more technical training.

Thank You!

Questions?

